Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Visit our website at: http://www.mitsubishielectric.com/elevator/

PASSENGER ELEVATORS

Superseding publication of C-CL1-3-C9113-A Mar. 2013.

Specifications are subject to change without notice.

2013

2nd Edition
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Mitsubishi Electric elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Electric promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators' and escalators' lifecycle.
Welcome to a New Era in Vertical Transportation

Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Regenerative Converter (PCNV) (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of up to 35% (Reduction in CO₂ emissions: 1400 kg/year). In addition, the Regenerative Converter has the effect of decreasing harmonic currents.

Traction Machine with PM Motor

The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO₂ emissions. In addition, we have adopted a 2:1 (single-wrap) roping system, which lessens load on the traction machine, and allows further reductions in traction machine size.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Motor</th>
<th>Traction Machine</th>
<th>Motor Drive</th>
<th>Control Circuit</th>
<th>Power Consumption</th>
<th>CO₂ emissions (kg/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>AC & DC</td>
<td>Worm gear</td>
<td>Relay</td>
<td>Permanent magnet</td>
<td>100%</td>
<td>15%</td>
</tr>
<tr>
<td>1980</td>
<td>ACV control</td>
<td>ACV control</td>
<td>VVVF control</td>
<td>Microcomputer</td>
<td>95%</td>
<td>8%</td>
</tr>
<tr>
<td>2010</td>
<td>2010</td>
<td>2010</td>
<td>2010</td>
<td>2010</td>
<td>16%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Notes:
1. AC: Alternating current, variable voltage
2. DC: Direct current, fixed voltage
3. Variable voltage, variable frequency
4. CO₂ emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.
5. Calculated from power consumption with a coefficient of 0.6 kg/kWh.
6. The CO₂ emissions values in this table vary according to conditions.

LED Lighting (Optional)

Energy-efficient LEDs consume less power than conventional lamps. Used for ceiling lights and hall lanterns, LEDs boost the overall energy performance of the building. Furthermore, the long service life eliminates the need for frequent lamp replacement.

Energy-saving Features

Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

Energy-saving Operation – Number of Cars (ESO-N) (Optional for ΣAI-22)
The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

Energy-saving Operation – Allocation Control (ESO-W) (ΣAI-2200C only)
Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption. Please refer to page 10 for details.

Car Light/Fan Shut Off – Automatic (CLO-A/CLO-A)
The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.
Smooth Mobility through Efficient Group Control

When a building is expected to have heavy traffic, optimum car allocation suited for every condition makes a big difference in preventing congestion at a lobby floor and reducing long waits.

Group Control Systems: ΣAI-22 and ΣAI-2200C

- ΣAI-22 and ΣAI-2200C control multiple elevators optimally according to the building size.
- Improving of traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Improving traffic efficiency can alleviate the passengers’ irritation. Applying the new allocation algorithm, the average waiting time and long waits are reduced.

Forecasting a Near-Future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment

When a hall call is registered, the algorithm assumes a near-future call that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation — Allocation Control (ESO-W)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Car allocation that maximizes operational efficiency does not necessarily translate to energy efficiency. A car uses energy efficiently when it travels down with a heavy load, or up with a light load. Accordingly, if multiple cars have the same traveling distance, this system chooses the car that requires the least energy.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Initial conditions: non-peak period

- Car A: Parked in the 3rd floor
- Car B: About to leave the 9th floor with several passengers
- Car C: Parked at the 9th floor
- Car D: Parked at the 1st floor

Under the conditions above, when a hall call is registered at the 6th floor to go to the 1st floor, waiting time and traveling distance will be the same regardless of whether car A, B or C responds.

In response to the call, the cars will operate in the following ways:

- Car A will travel up with no passengers and then down with only one passenger (requires more energy than car B).
- Car B will travel down with more passengers than car A (requires the least energy).
- Car C will travel down with no passengers and then down with only one passenger (requires the most energy).
- Car selection

During non-peak hours when energy efficiency is prioritized, car B is selected.
Dynamic Rule-set Optimizer
Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Prediction System (DOAS-S) (Optional)
When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

DOAS-S (Lobby floor(s))
DOAS-S hall operating panels are installed only on busy floor(s) such as the lobby while other floors have conventional hall fixtures. This is particularly beneficial for improving the traffic flow leaving from the busy floor. It is especially useful in buildings with heavy up-peak traffic.

Example of hall arrangement

DOAS-S (All floors)
DOAS-S hall operating panels are installed on all floors. Cars receive destination information from all floors to provide the best service for more complex traffic conditions throughout the day.

Example of hall arrangement

Please consult our local agents for DOAS-S (all floors).

The features introduced on these pages are applicable to ΣAI-2200C only. Please refer to page 17 and 18, and the ΣAI-2200C brochure for other features and details.
Safety and Comfort

Emergency Situations

Emergency operations
Enhance safety by adding emergency operation features which quickly respond to a power failure, fire or earthquake.

<table>
<thead>
<tr>
<th>Power failure</th>
<th>Mitsubishi Emergency Landing Device (MELD) (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Fire</td>
<td>Operation by Emergency Power Source — Automatic/Manual (OEPS) (Optional)</td>
</tr>
<tr>
<td></td>
<td>Upon power failure, predetermined car(s) use a building's emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) will resume normal operation.</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Fire Emergency Return (FER) (Optional)</td>
</tr>
<tr>
<td></td>
<td>When a key switch or a building's fire sensors are activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Fire</td>
<td>Firefighters' Emergency Operation (FE) (Optional)</td>
</tr>
<tr>
<td></td>
<td>When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate fire-fighting and rescue operations.</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Earthquake Emergency Return (EER-P/EER-S) (Optional)</td>
</tr>
<tr>
<td></td>
<td>When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
</tbody>
</table>

*Please refer to page 16 for details.

For Safe Boarding

Door safety devices
Our reliable safety device ensures that the doors are clear to open and close. Depending on the type of sensor, the detection area differs.

- Hall Motion Sensor (HMS) (Optional)
- Multi-beam Door Sensor (Optional)
- Multi-beam Door Sensor – Signal Type (MBSS) (Optional)

For Comfortable Use

User-oriented Design
Great care is taken in the design and manufacture of each and every elevator part to ensure a comfortable, user-friendly ride.

Clear Font
The font for indicators and buttons is highly visible. On tactile buttons in particular, the font makes letters/numbers easy for visually-impaired passengers to distinguish.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

LCD Position Indicators (Car/hall) (Optional)
Clear, bright LCD indicators deliver information clearly and effectively.

- Mirror (Optional)
Providing enhanced visibility, a rear-wall mirror assists wheelchair users in exiting the elevator safely.

- Handrail (Optional)
The handrail thickness is ergonomically designed for comfortable use.

Please refer to the brochure of design guide for other signal fixtures and interior, etc.
Standard Design

Car

Car operating panel

For front return panel

For front return panel

Car Design Example

Walls
- SUS-HL

Transom panel
- SUS-HL

Front return panels
- SUS-HL

Kickplate
- Aluminum

Flooring
- PR803

Car operating panel
- CBV1-C760

Hall

Narrow Jamb: E-102

Hall Design Example

Jamb
- SUS-HL

Doors
- SUS-HL

Hall position indicator and button
- PIV1-A710N

Notes

1. Maximum number of floors: 22 floors
2. *Some letters of the alphabets are not available. Please consult our local agents for details.*

Features (1/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Lighting: Central lighting</td>
</tr>
<tr>
<td>Ceiling: S00</td>
<td>Ceiling panel: Painted steel sheet (Y033) with a milky white resin lighting cover Lighting Central lighting</td>
</tr>
</tbody>
</table>

Car Design Example

- CBV1-C760

Hall position indicators and buttons

- **Metal-like resin faceplates**

Hall Design Example

- **Jamb**
 - SUS-HL

Notes

- Please refer to the design guide for details and other designs.

Features (2/2)

DOOR OPERATION FEATURES

Door Sensor Self-diagnosis

- (DDDA) A buzzer sounds and the doors slowly close when the doors have remained open for longer than the preset period. With AAB or AAN-G, a beep and voice guidance sound instead of the buzzer.

Automatic Door Speed Control

- (AODC) Door load on the door will be automatically adjusted, depending on the load on the door, thereby making the door speed consistent throughout all floors.

Automatic Door-open Time Adjustment

- (DOT) The time doors are open will automatically be adjusted, depending on whether the stop was called from the hall or the car, to allow smooth boarding of passengers or loading of baggage.

Reopen with Hall Button (ROHB)

- Closing doors can be reopened by pressing the hall button corresponding to the traveling direction of the car.

Repeated Door-close (RDC)

- Should an obstacle prevent the doors from closing, the doors will slowly open and close until the obstacle is cleared from the doorway.

Door Nudging Feature

- **With buzzer** (NWG) A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With AAB or AAN-G, a beep and voice guidance sound instead of the buzzer.

Door Load Detector (DLD)

- When excessive door load has been detected while opening or closing, the doors immediately reverse.

Safety Ray (SR)

- **1-Beam**
- **2-Beam**

Extended Door-open Button (EDOB, TEB)

- When the button inside a car is pressed, the doors will remain open longer to allow smooth boarding of passengers or loading of baggage.

Safety Door Edge (SDE)

- *Sensing door edge(s) detect passengers or objects during door closing. (Cannot be combined with the MBSS feature.)*

Multi-beam Door Sensor

- **Signal Type (MBSS)**
- **Type 1 (T1)**
- **Type 2 (T2)**

Notes

- 1. SCBC (3-car selective collective) - Standard, SCBC (3-car group control system) - Optional, SCBC (3-car group control system) - Optional
- 2. SCBC (3-car group control system) - Optional, 2C-2BC (2-2BC group control system) - Optional
- 3. SCBC (3-car group control system) - Optional, 2C-2BC (2-2BC group control system) - Optional
- 4. 1C - 2BC (1-car selective collective) - Standard, 2C-2BC (2-car group control system) - Optional, ΣAI-22 (3- and 4-car group control system) - Optional
- 5. flush with the floor
- 6. please refer to page 13

Hall Motion Sensor (HMS)

- Infrared light is used to scan a 3D area near the open doors to detect passengers or objects. Please refer to page 13.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>3C-2BC</th>
<th>2C-2BC</th>
<th>1C-2BC</th>
<th>1C-2BC (system)</th>
<th>2BC-2BC</th>
<th>1C-2BC (system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONAL AND SERVICE FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe Landing (SLF)</td>
<td>If a car has stopped between floors due to some equipment malfunction, the controller checks the issue, and if it is considered safe to move the car, the car will move to the nearest floor at a low speed and the doors will open.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Landing (NLD)</td>
<td>If the elevator doors do not open fully at a destination floor, the doors close, and the car automatically moves to the next nearest floor where the doors will open.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity of Service (COS)</td>
<td>A car which is experiencing trouble is automatically withdrawn from group control operation and the next car will controlled by the remaining cars in the group.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overload Holding Stop (OLH)</td>
<td>A buzzer sounds to prevent the car from being overloaded. The doors remain open and the car will not leave that floor until enough passengers exit.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Hall Call Registration (PHS)</td>
<td>If a car cannot carry all waiting passengers because it is full, another car will automatically be assigned for the remaining passengers.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Call-Canceling (CCC)</td>
<td>When a car has responded to the first car call from the direction, the system neglects remaining calls in the same direction as misses and invalidates them.</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Shat Off</td>
<td>— Automatic (FOP-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Light Shat Off</td>
<td>— Automatic (CLO-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Operation for Group Control Microprocessor (GCMK)</td>
<td>An operation by car controllers which automatically maintains elevator operation in the event of a microprocessor or communication line in the group controller has failed.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Service (ILS)</td>
<td>Independent operation where a car is withdrawn from group control operation for independent use, such as maintenance or repair, and operates only to car calls.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Bypass (ABP)</td>
<td>A fully loaded car bypasses hall calls in order to maintain optimum operational efficiency.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Call Canceling</td>
<td>— Automatic (FOP-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Automatic (CLO-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-service Temporary Relinquish for Car Call Reader (NSCR-C)</td>
<td>To enhance security, car calls for desired floors can be registered only by placing a card over a key switch (with or without a timer) mounted in a specified hall.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secret Call Service (SCS-B)</td>
<td>To enhance security, car calls for desired floors can be registered only by placing a card over a card reader. This function is automatically deactivated during emergency operation.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-service to Specific Floors — Car Button Type (NCST-C)</td>
<td>To enhance security, service to specific floors can be disabled by using the car operating panel. This function is automatically deactivated during emergency operation.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-service to Specific Floors — Click Button Type (NCST-C)</td>
<td>To enhance security, service to specific floors can be disabled by using a manual or timer switch. This function is automatically deactivated during emergency operation.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-service Remote (OCR)</td>
<td>With a key switch on the supervisory panel, etc., a car can be called in a specified floor after responding to all car calls, and then automatically be taken out of service.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secret Information Display (SID)</td>
<td>To enhance security, car calls for desired floors can be registered only by placing a card over a card reader. This function is automatically deactivated during emergency operation.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Automatic (FOP-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Automatic (CLO-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall Information Display (HID)</td>
<td>This LCD (10.4- or 15-inch) for elevator halls shows the date and time, car position, travel direction and elevator status messages.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— For 3C-2BC (system)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— For 2C-2BC (system)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— For 1C-2BC (system)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Arrival Chime (ACC)</td>
<td>When a passenger enters a destination floor at a hall, the hall operating panel indicates which doors will open.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonic Car Button — Click Type (SCT)</td>
<td>A click-type car button which emits electronic beep sounds when pressed to indicate that the car is coming.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Automatic (FOP-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Automatic (CLO-A)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Prediction Operation (OPO)</td>
<td>A system which allows communication between passengers inside a car and the building personnel.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car LCD Position Indicator (CDI-S)</td>
<td>The 5.7-inch LCD displays the date and time, car position, travel direction and elevator status messages.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall LCD Position Indicator (HDI-S)</td>
<td>The 5.7 inch LCD displays the date and time, car position, travel direction and elevator status messages.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Information Display (CID)</td>
<td>The LCD (15-inch) car front return panel shows the date and time, car position, travel direction and elevator status messages.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall Information Display (HID)</td>
<td>The LCD (15-inch) hall return panel shows the date and time, positions, travel direction and elevator status messages.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GROUP CONTROL FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>3C-2BC</th>
<th>2C-2BC</th>
<th>1C-2BC</th>
<th>1C-2BC (system)</th>
<th>2BC-2BC</th>
<th>1C-2BC (system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Operation</td>
<td>Number of Cars (ESO-N)</td>
<td>To ease the energy, the number of service cars is automatically reduced to some extent, but not so much that it adversely affects passenger waiting time. Please refer to page 8.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Prediction System (DOAS-S)</td>
<td>When a passenger enters a destination floor at a hall, the hall operating panel indicates which doors will open. (The passenger does not need to press a button in the elevator.) Dispersing passengers by destination prevents congestion in the cars and minimizes their waiting and traveling time. (Cannot be combined with some features. Please consult our local agents for the production terms, etc.)</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intense Up Peak (IUP)</td>
<td>This function is automatically divided into two groups of cars to serve upper and lower floors separately during up peak. In addition, the number of cars to be allocated, the timing of car allocation to the lobby floor, the timing of door closing, etc. are controlled based on predicted traffic data.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up Peak Service (UPS)</td>
<td>Controls the number of cars to be allocated, and the timing of car allocation in order to meet increased demands for upward travel during off-peak travel time, hotel check-out time, etc. to maintain passenger waiting time.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down Peak Service (DFS)</td>
<td>Controls the number of cars to be allocated and the timing of car allocation to meet increased demands for downward travel during off-peak travel time, hotel check-out time, etc. to maintain passenger waiting time.</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>450</td>
<td>1.0</td>
<td>1.0</td>
<td>AH 1400×850</td>
<td>1750×1590</td>
<td>RH 1950×2720</td>
<td>1750×1590</td>
<td>2100×1450</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>500</td>
<td>1.0</td>
<td>1.5</td>
<td>1400×1030</td>
<td>1750×2050</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P9</td>
<td>9</td>
<td>600</td>
<td>1.0</td>
<td>1.75</td>
<td>1400×1110</td>
<td>1750×2050</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P10</td>
<td>10</td>
<td>700</td>
<td></td>
<td>2.0</td>
<td>1400×1250</td>
<td>1750×2050</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>750</td>
<td></td>
<td>2.5</td>
<td>1400×1350</td>
<td>1750×2050</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P13</td>
<td>13</td>
<td>900</td>
<td></td>
<td>3.0</td>
<td>1600×1350</td>
<td>2100×2000</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P15</td>
<td>15</td>
<td>1000</td>
<td></td>
<td>4.0</td>
<td>1600×1500</td>
<td>2100×2000</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1150</td>
<td></td>
<td>5.0</td>
<td>1600×1500</td>
<td>2100×2000</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
<tr>
<td>P20</td>
<td>20</td>
<td>1350</td>
<td></td>
<td>7.5</td>
<td>1800×1500</td>
<td>2180×2830</td>
<td>RH 1950×2720</td>
<td>1750×2050</td>
<td>2100×1900</td>
</tr>
</tbody>
</table>

*Terms of the table:
- The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
- Rated capacity is calculated as 65kg per person, as required by the Building Standard Law of Japan, 2009.
- The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
- All dimensions shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- This table shows the specifications without the fireproof landing door and counterweight safety.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>65kg Capacity 6600</td>
<td>30</td>
<td>30</td>
<td>400</td>
<td>5050</td>
<td>1900</td>
<td>1600</td>
</tr>
<tr>
<td>1.5</td>
<td>90kg Capacity 9900</td>
<td>30</td>
<td>30</td>
<td>440</td>
<td>4810</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>3.0</td>
<td>105kg Capacity 10500</td>
<td>30</td>
<td>30</td>
<td>4710</td>
<td>4820</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>5.0</td>
<td>125kg Capacity 12500</td>
<td>30</td>
<td>30</td>
<td>4950</td>
<td>5050</td>
<td>1900</td>
<td>2000</td>
</tr>
</tbody>
</table>

*Terms of the table:
- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.

Elevation

*Note:
- Hoistway section for counterweight side drop is slightly different from this figure.
- Layout (position of control panel, etc.) differs depending on capacity.

Applicable Standards

NEXIEZ-MR complies with Mitsubishi Electric standard*. For details of compliance, please consult our local agents.

* Based on, but not fully complying with the Building Standard Law of Japan, 2009.
Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td></td>
<td>CO</td>
<td>900</td>
<td>1400×1350</td>
<td>Rear</td>
<td>1930×1930</td>
<td>2170×1930</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>1.0</td>
<td>CO</td>
<td>1000</td>
<td>1400×1400</td>
<td>Side</td>
<td>2137×1930</td>
<td>2100×1930</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>1.75</td>
<td>CO</td>
<td>1100</td>
<td>2400×1400</td>
<td>Side</td>
<td>2137×1930</td>
<td>2100×1930</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td></td>
<td>CO</td>
<td>1225</td>
<td>2600×1400</td>
<td>Rear</td>
<td>2137×1930</td>
<td>2100×1930</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>TR</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
<td>825Capacity(1150)</td>
<td>20</td>
<td>10</td>
<td>4440</td>
<td>1360</td>
<td>825</td>
<td>2250</td>
</tr>
<tr>
<td>15</td>
<td>1.6</td>
<td>1050</td>
<td>20</td>
<td>10</td>
<td>4550</td>
<td>1400</td>
<td>1050</td>
<td>2290</td>
</tr>
<tr>
<td>16</td>
<td>1.75</td>
<td>1275</td>
<td>20</td>
<td>10</td>
<td>4720</td>
<td>1460</td>
<td>1275</td>
<td>2500</td>
</tr>
<tr>
<td>18</td>
<td>2.0</td>
<td>1350</td>
<td>20</td>
<td>10</td>
<td>4950</td>
<td>1490</td>
<td>1350</td>
<td>2500</td>
</tr>
<tr>
<td>20</td>
<td>2.5</td>
<td>1500</td>
<td>20</td>
<td>10</td>
<td>5290</td>
<td>1510</td>
<td>1500</td>
<td>2660</td>
</tr>
</tbody>
</table>

Notice
- The contents of this table are applied only to standard specifications without counterweight safety. Please consult our local agents for other specifications.
- Rated capacity is calculated as 75kg per person, as required by EN81-1.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- This table shows the specifications without the fireproof landing door and counterweight safety.

Terms of the table
- The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
- Rated capacity is calculated as 75kg per person, as required by EN81-1.
- CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- This table shows the specifications without the fireproof landing door and counterweight safety.

Applicable Standards
NEXIEZ-MR complies with EN81-1.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Entrance position (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Counterweight position</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Minimum machine room dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>10</td>
<td>750</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P16</td>
<td>16</td>
<td>1200</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>0.25</td>
<td>1000</td>
<td>1400×1300</td>
<td>CO</td>
<td>1500×1000</td>
<td>1700×1800</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
<th>Minimum machine room clear height (mm)</th>
<th>Minimum floor to floor height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.75</td>
<td>2000</td>
<td>90</td>
<td>10</td>
<td>4100</td>
<td>1800</td>
<td>1520</td>
<td>1050</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>2000</td>
<td>90</td>
<td>10</td>
<td>4100</td>
<td>1800</td>
<td>1520</td>
<td>1050</td>
</tr>
<tr>
<td>1.25</td>
<td>2.5</td>
<td>2000</td>
<td>90</td>
<td>10</td>
<td>4100</td>
<td>1800</td>
<td>1520</td>
<td>1050</td>
</tr>
</tbody>
</table>

Elevation

Note: Hoistway section for counterweight side drop is slightly different from this figure.

Applicable Standards

NEXIE2-MR complies with GB7588.
Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work, and are therefore the responsibility of the building owner or general contractor:

• Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
• Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
• Architectural finishing of the machine room floor, and the walls and floors in the vicinity of the entrance hall after installation has been completed.
• Construction of an illuminated, ventilated and waterproofed elevator hoistway.
• A ladder to the elevator pit.
• The provision of cutting the necessary openings and joists.
• Separate beams, when the hoistway dimensions markedly exceed the specifications, and intermediate beams when two or more elevators are installed.
• All other work related to building construction.
• The machine room power-receiving panel and the electrical wiring for illumination, plus the electrical wiring from the electrical room to the power-receiving panel.
• The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices, etc.
• The power consumed in installation work and test operations.
• All the necessary building materials for grouting in of brackets, bolts, etc.
• The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
• The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
• The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

*Work responsibilities in installation and construction shall be determined according to local laws. Please consult our local agents for details.

Elevator Site Requirements

• The temperature of the machine room and elevator hoistway shall be below 40°C.
• The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
• Voltage fluctuation shall be within a range of +5% to -10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

• The desired number of units, speed and loading capacity.
• The number of stops or number of floors to be served.
• The total elevator travel and each floor-to-floor height.
• Operation system.
• Selected design and size of car.
• Entrance design.
• Signal equipment.
• A sketch of the part of the building where the elevators are to be installed.
• The voltage, number of phases, and frequency of the power source for the motor and lighting.
Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Visit our website at: http://www.mitsubishielectric.com/elevator/

Mitsubishi Electric Corporation
HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, Chiyoda-ku, TOKYO 100-8010, JAPAN

⚠️ Safety Tips: Be sure to read the instruction manual fully before using this product.